What is NumPy
NumPy is a Python C extension library for array-oriented computing
- Efficient
- In-memory
- Contiguous (or Strided)
- Homogeneous (but types can be algebraic)

Single element of data-type (dtype)

0 1 2 3 4 5 6 7 8

NumPy is suited to many applications
- Image processing
- Signal processing
- Linear algebra
- A plethora of others
NumPy is the foundation of the python scientific stack
Quick Start

In [1]: import numpy as np

In [2]: a = np.array([1,2,3,4,5,6,7,8,9])

In [3]: a
Out[3]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [4]: b = a.reshape((3,3))

In [5]: b
Out[5]:
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

In [6]: b * 10 + 4
Out[6]:
array([[14, 24, 34],
 [44, 54, 64],
 [74, 84, 94]])
Array Shape

One dimensional arrays have a 1-tuple for their shape

Shape: (9,)
Two dimensional arrays have a 2-tuple

Shape: (3, 5)
...And so on

Shape: (3, 5, 4)
Array Element Type (dtype)

- NumPy arrays comprise elements of a single data type
- The type object is accessible through the `.dtype` attribute

Here are a few of the most important attributes of dtype objects

- `dtype.byteorder` — big or little endian
- `dtype.itemsize` — element size of this dtype
- `dtype.name` — a name for this dtype object
- `dtype.type` — type object used to create scalars

There are many others...
Array dtypes are usually inferred automatically

```python
In [16]: a = np.array([1, 2, 3])
In [17]: a.dtype
Out[17]: dtype('int64')
In [18]: b = np.array([1, 2, 3, 4.567])
In [19]: b.dtype
Out[19]: dtype('float64')
```

But can also be specified explicitly

```python
In [20]: a = np.array([1, 2, 3], dtype=np.float32)
In [21]: a.dtype
Out[21]: dtype('int64')
In [22]: a
Out[22]: array([ 1.,  2.,  3.], dtype=float32)
```
Array Creation

Explicitly from a list of values

```python
In [2]: np.array([1, 2, 3, 4])
Out[2]: array([1, 2, 3, 4])
```

As a range of values

```python
In [3]: np.arange(10)
Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

By specifying the number of elements

```python
In [4]: np.linspace(0, 1, 5)
Out[4]: array([ 0. , 0.25, 0.5, 0.75, 1. ])
```
Zero-initialized

```
In [4]: np.zeros((2,2))
Out[4]:
array([[ 0.,  0.],
       [ 0.,  0.]])
```

One-initialized

```
In [5]: np.ones((1,5))
Out[5]: array([[ 1.,  1.,  1.,  1.,  1.]])
```

Uninitialized

```
In [4]: np.empty((1,3))
Out[4]: array([[ 2.12716633e-314,  2.12716633e-314,  2.15203762e-314]])
```
Constant diagonal value

In [6]: np.eye(3)
Out[6]:
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Multiple diagonal values

In [7]: np.diag([1, 2, 3, 4])
Out[7]:
array([[1, 0, 0, 0],
 [0, 2, 0, 0],
 [0, 0, 3, 0],
 [0, 0, 0, 4]])
Array Memory Layout

- **Header**
- **Array**
- **Scalar**
- **Dtype**
- **Hdr**

Diagram showing the memory layout of an array, with nodes labeled 'header', 'array', 'scalar', 'dtype', and 'hdr'.
Indexing and Slicing

all values

arr[0:2, :]

arr[2, 1:]

Implied end
arr[::2, 2:3]

Implied zero
NumPy array indices can also take an optional stride

```
arr[:,::2]
```

```
arr[::2,::3]
```
Array Views

Simple assignments do not make copies of arrays (same semantics as Python). Slicing operations do not make copies either; they return views on the original array.

```python
In [2]: a = np.arange(10)
In [3]: b = a[3:7]
In [4]: b
Out[4]: array([3, 4, 5, 6])
In [5]: b[:] = 0
In [6]: a
Out[6]: array([0, 1, 3, 0, 0, 0, 0, 7, 8, 9])
In [7]: b.flags.owndata
Out[7]: False
```

Array views contain a pointer to the original data, but may have different shape or stride values. Views always have `flags.owndata` equal to `False`.
Universal Functions (ufuncs)

NumPy ufuncs are functions that operate element-wise on one or more arrays

\[
c = a + b
\]

ufuncs dispatch to optimized C inner-loops based on array dtype
NumPy has many built-in ufuncs

- **comparison**: `<`, `<=`, `==`, `!=`, `>=`, `>`
- **arithmetic**: `+`, `-`, `*`, `/`, `reciprocal`, `square`
- **exponential**: `exp`, `expm1`, `exp2`, `log`, `log10`, `log1p`, `log2`, `power`, `sqrt`
- **trigonometric**: `sin`, `cos`, `tan`, `acsin`, `arccos`, `atctan`
- **hyperbolic**: `sinh`, `cosh`, `tanh`, `acsinh`, `arccosh`, `atctanh`
- **bitwise operations**: `&`, `|`, `~`, `^`, `left_shift`, `right_shift`
- **logical operations**: `and`, `logical_xor`, `not`, `or`
- **predicates**: `isfinite`, `isinf`, `isnan`, `signbit`
- **other**: `abs`, `ceil`, `floor`, `mod`, `modf`, `round`, `sinc`, `sign`, `trunc`
Array method reductions take an optional axis parameter that specifies over which axes to reduce.

axis=None reduces into a single scalar.

```python
In [7]: a.sum()
Out[7]: 105
```
axis=None is the default
axis=0 reduces into the zeroth dimension

In [8]: a.sum(axis=0)
Out[8]: array([15, 18, 21, 24, 27])

axis=1 reduces into the first dimension

In [9]: a.sum(axis=1)
Out[9]: array([10, 35, 60])
A key feature of NumPy is broadcasting, where arrays with different, but compatible shapes can be used as arguments to ufuncs.

In this case an array scalar is broadcast to an array with shape $(5,)$.
A slightly more involved broadcasting example in two dimensions

\[
c = a + b
\]

Here an array of shape \((3, 1)\) is broadcast to an array with shape \((3, 2)\)
Broadcasting Rules

In order for an operation to broadcast, the size of all the trailing dimensions for both arrays must either:

be equal OR be one

<table>
<thead>
<tr>
<th>A</th>
<th>(1d array):</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(2d array):</td>
<td>2 x 3</td>
</tr>
<tr>
<td>Result</td>
<td>(2d array):</td>
<td>2 x 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>(2d array):</th>
<th>6 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(3d array):</td>
<td>1 x 6 x 4</td>
</tr>
<tr>
<td>Result</td>
<td>(3d array):</td>
<td>1 x 6 x 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>(4d array):</th>
<th>3 x 1 x 6 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(3d array):</td>
<td>2 x 1 x 4</td>
</tr>
<tr>
<td>Result</td>
<td>(4d array):</td>
<td>3 x 2 x 6 x 4</td>
</tr>
</tbody>
</table>
Square Peg in a Round Hole

If the dimensions do not match up, `np.newaxis` may be useful

```python
In [16]: a = np.arange(6).reshape((2, 3))
In [17]: b = np.array([10, 100])
In [18]: a * b
```

```
ValueError: operands could not be broadcast together with shapes (2,3) (2)
```

```
In [19]: b[:,np.newaxis].shape
Out[19]: (2, 1)

In [20]: a * b[:,np.newaxis]
Out[20]:
array([[  0,   0,   0],
       [300, 400, 500]])
```
Array Methods

- Predicates
 - `a.any()`, `a.all()`

- Reductions
 - `a.mean()`, `a.argmin()`, `a.argmax()`, `a.trace()`,
 `a.cumsum()`, `a.cumprod()`

- Manipulation
 - `a.argsort()`, `a.transpose()`, `a.reshape(...)`,
 `a.ravel()`, `a.fill(...)`, `a.clip(...)`

- Complex Numbers
 - `a.real`, `a.imag`, `a.conj()`
Fancy Indexing

NumPy arrays may be used to index into other arrays

In [2]: a = np.arange(15).reshape((3,5))

In [3]: a
Out[3]:
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]])

In [4]: i = np.array([[0,1], [1,2]])

In [5]: j = np.array([[2, 1], [4, 4]])

In [6]: a[i,j]
Out[6]:
array([[2, 6],
 [9, 14]])
Boolean arrays can also be used as indices into other arrays

In [2]: a = np.arange(15).reshape((3, 5))

In [3]: a
Out[3]:
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]])

In [4]: b = (a % 3 == 0)

In [5]: b
Out[5]:
array([[True, False, False, True, False],
 [False, True, False, True],
 [False, False, True, False, False]], dtype=bool)

In [6]: a[b]
Out[6]: array([0, 3, 6, 9, 12])
NumPy Functions

- Data I/O
 - fromfile, genfromtxt, load, loadtxt, save, savetxt

- Mesh Creation
 - mgrid, meshgrid, ogrid

- Manipulation
 - einsum, hstack, take, vstack
Array Subclasses

- `numpy.ma` — Masked arrays
- `numpy.matrix` — Matrix operators
- `numpy.memmap` — Memory-mapped arrays
- `numpy.recarray` — Record arrays
Other Subpackages

- **numpy.fft** — Fast Fourier transforms
- **numpy.polynomial** — Efficient polynomials
- **numpy.linalg** — Linear algebra
 - `cholesky`, `det`, `eig`, `eigvals`, `inv`, `linalg`, `norm`, `qr`, `svd`
- **numpy.math** — C standard library math functions
- **numpy.random** — Random number generation
 - `beta`, `gamma`, `geometric`, `hypergeometric`, `lognormal`, `normal`, `poisson`, `uniform`, `weibull`
1) Look inside the file BodyTemperature.txt (0=MALE, 1=FEMALE)

2) Remove the header of the file and save it as BodyTemperature_nohead.txt

3) Read the file in numpy using the command np.genfromtxt() and put it into a numpy 2D array
 (have a look at the manual for the correct options)

4) Create a function to extract the number of Males and Female in the dataset

5) Compute the overall mean for Age, HeartRate and Temperature

6) Compute the mean, max and min of Age, HeartRate and Temperature for Male and Females separately
 and write the results on the file BD_results.txt in a table format.

7) Define a function to normalize a 1D array (mean=0, variance=1). Apply the function to Temperature and
 check if it works.
import numpy as np

t = np.linspace(0, 120, 4000)
PI = np.pi

signal = 12*np.sin(3*2*PI*t) # 3 Hz
signal += 6*np.sin(8*2*PI*t) # 8 Hz
signal += 1.5*np.random.random(len(t)) # noise

FFT = abs(np.fft.fft(signal))

freqs = np.fft.fftfreq(signal.size, t[1] - t[0])
Demos
These slides are currently available at